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Different from significant gene expression analysis which looks for genes that are differentially regulated, feature selection in the
microarray-based prognostic gene expression analysis aims at finding a subset of marker genes that are not only differentially
expressed but also informative for prediction. Unfortunately feature selection in literature of microarray study is predominated
by the simple heuristic univariate gene filter paradigm that selects differentially expressed genes according to their statistical
significances. We introduce a combinatory feature selection strategy that integrates differential gene expression analysis with the
Gram-Schmidt process to identify prognostic genes that are both statistically significant and highly informative for predicting
tumour survival outcomes. Empirical application to leukemia and ovarian cancer survival data through-within- and cross-study
validations shows that the feature space can be largely reduced while achieving improved testing performances.
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1. Introduction

Similar to significant gene expression analysis, one demand-
ing challenge in prognostic microarray experiments of
tumour outcomes is the development of a powerful prog-
nostic profile based on informative genes or features selected
from a large pool of candidate genes measured on a relatively
small number of arrays or tumour samples. Among the
thousands of genes measured in an experiment, it is antic-
ipated that only a limited number of genes are informative
for prognostic purposes while a large number of genes are
redundant or irrelative and thus can be ignored. Inclusion
of uninformative genes for tumour outcome prediction only
introduces unnecessary noise and will inevitably complicate
model building and introduces computational difficulties.
Obtaining a smaller subset of representative genes while
retaining the prognostic characteristics of the original data
should lead to a more accurate and efficient learning
system with improved classification performance [1–3].

Furthermore, for prognostic purpose, predictive expression
profiles built upon a limited number of genes are more
useful in practice because their expression levels can be easily
measured using economic and conventional methods, for
example, the popular quantitative real-time PCR (qrt-PCR).

Different from significant gene expression analysis which
looks for genes that are differentially regulated, feature
selection in prognostic microarray studies aims at finding a
subset of informative marker genes that are discriminative
for prediction, ideally without redundancy. Ein-Dor et al.
[4] reported that the set of outcome predictive genes is
not unique due to the existence of multiple genes that are
correlated with the clinical outcomes, and some of them
may have only small differences in their correlations. Such
a situation represents the hitting-set problem in finding
the smallest set of features (hitting set) that encompass or
characterize all the classes [5]. The difficulty in this context is
the exponential search space created by all the possible genes
or markers to be considered.
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In the literature of prognostic microarray study, feature
selection is predominated by the simple heuristic univariate
gene filtering paradigm [6]. Since the univariate approach
does not take into account the correlated or interactive struc-
ture among the genes, classifiers built upon genes so selected
can be less accurate. More advanced approaches based on
multivariate models have been considered, among them the
variance-based dimension reduction [1, 7]. In prognostic
microarray studies of tumour survival outcomes, the subject
is further complicated by the censored observations and by
the continuous nature of survival data for which simply
engaging the gene selection and model building schemes for
binary outcomes is inappropriate. In this paper, we introduce
a combinatory feature selection strategy that integrates dif-
ferential gene expression analysis for gene filtering using the
supervised Cox regression model, unsupervised multivariate
analysis for gene ranking, and redundancy reduction using
the Gram-Schmidt process for identifying prognostic genes
that are both statistically significant and highly informative
for predicting tumour survivals. Empirical application of
our method through both within- and cross-study validation
shows that the feature space can be largely reduced while
achieving improved testing performances.

2. Methods

2.1. Gene Filtering. We start with identifying genes that
are differentially expressed in a microarray experiment by
testing the marginal association between gene expression and
survival time using the popular Cox regression model in
which both censored and uncensored observations are used.
In the Cox regression model, we assume that the hazard of
death at time point t for subject i with the expression level of
gene j, xi, j , is proportional to the baseline hazard of gene j at
time t,hj,0(t), that is,

hi(t) = hj,0(t) exp
(
βjxi, j

)
, (1)

where βj is the regression coefficient standing for the effect
of gene j in affecting survival with a null hypothesis of
βj = 0. Our gene filtering can be performed according to the
statistical significance level (P-value) or based on the number
of genes to be retained. Note that the gene filtering step is
done solely on the training set of the data.

2.2. Ranking of Significant Genes. Suppose there are m
significant genes that survived the above gene filtering step in
a microarray experiment with N samples in the training set,
and we use xi, j (i = 1, 2, . . . ,N ; j = 1, 2, . . . ,m) to represent
each expression levels for the genes in the feature space. Our
objective here is to find a subset of informative marker genes
or features of size d (d ≤ m) for predicting the outcomes of
the testing samples. As mentioned above, the selected subset
of genes should characterize the major features of the overall
feature space of significant genes. Following Wei and Billings
[8], we first calculate the squared-correlation coefficient for

two vectors xs and xt, s, t ∈ {1, 2, . . . ,m}, each representing
one feature in the feature space,

r2(xs, xt) =
(
xTs xt

)2

(
xTs xs

)(
xTt xt

) . (2)

Equation (2) is done for all combinations of s and t. For
each gene (e.g., j), we calculate the mean of the squared-
correlation as r2

mean( j) = (1/n)
∑n

s=1 r
2(xs, xj). The gene with

the highest mean is selected as the first most representative
gene.

To select the second gene, each of the unselected genes
indicated as j is orthogonalized to the selected gene using the
Gram-Schmidt algorithm [8, 9] with the orthogonalization
for the first selected gene z1 equaling to x1:

z(2)
j = xj −

xTj z1

zT1 z1
z. (3)

Now we repeat the procedure in selecting the first gene by
calculating the squared-correlation coefficient between each
of the unselected genes j but using its orthogonalization and
each of the n original genes and obtain its mean as r2

mean( j) =
(1/n)

∑n
s=1 r

2(xs, z
(2)
j ). The second gene is then selected as the

one with the highest mean.
Likewise, in order to select the kth gene, each of the

unselected genes j is orthogonalized to the k-1 selected genes
as

z(k)
j = xj −

xTj z1

zT1 z1
z1 −

xTj z2

zT2 z2
− · · · −

xTj zk−1

zTk−1zk−1
zk−1. (4)

We again calculate the squared-correlation coefficient
between each of the unselected genes j and each of the n
original genes, and the mean for each of the genes, r2

mean( j) =
(1/n)

∑n
s=1 r

2(xs, z
(k)
j ). The kth gene is selected again as the

gene with the highest mean. This process is repeated until all
genes are selected and meanwhile ranked.

With the above procedure, a subset consisting of the most
representative genes that accounts for the variation of the
overall features with a high percentage can be selected. The
data vector for each gene or feature can be approximated by a
linear combination of the selected subset of features of size d
(d ≤ m). Following Korenberg et al. [10], we can calculate the
error reduction ratio (ERR) as a measurement for accounting
for the variation in gene j by the kth gene (k = 1, 2, . . . ,d) in
the selected feature subset,

ERR
(
j, k
) =

(
xTj zk

)2

(
xTj xj

)(
zTk zk

) × 100%. (5)

The mean percentage of variation in the overall features or
genes that are accounted for by gene k can be calculated as

ERR(k) =
(

1
m

) m∑

j=1

ERR
(
j, k
)
. (6)
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Figure 1: Flow diagram of the combinatory procedure. A combination of gene filtering using the supervised and gene ranking using the
unsupervised analyses helps to assist the optimization step to identify a subset of prognostic genes for predicting the outcomes of an
independent testing set.

Finally, the accumulated percentage of variation in the
overall features or genes that are accounted for by the subset
of d selected genes can be calculated as

SERR(d) =
d∑

k=1

ERR(k). (7)

SERR serves as a measurement in defining a subset of genes
to sufficiently represent the overall features.

2.3. Optimization and Prediction Model Building. After rank-
ing significant genes, a subset of the most representative and
informative marker genes are selected through optimization
in the training set using forward selection which adds
accumulatively each of the ranked genes (starting from the
highest rank genes) to the prediction model and assesses
model performance on the training set by calculating
prediction accuracy (sensitivity, specificity) together with
the chi-squared statistic for comparing differential survival
between the predicted favourable and unfavourable groups
using the log-rank test. The support vector machine (SVM)
is used as the prediction model because of its popularity
in machine learning. The simple linear kernel is chosen
in model fitting. The free R package e1071 is used for
fitting the SVM models. We set SVM probability of 0.5
as the cut-off (≥0.5 as favourable; <0.5 as unfavourable)
in order to assign equal probability for the class mem-
bership. Sensitivity is calculated as the proportion of pre-
dicted favourable survivors in the long survivors (survival
time > mean survival) and specificity as the proportion
of predicted unfavourable survivors in those who died
before the mean survival. In training the prediction models,
the training set is divided into the observed favourable
(survived over mean survival of the training set) and
unfavourable (died before mean survival of training set)
groups. Based on the class labels, classification models are
trained based on different number of top rank genes and
model performances evaluated. This optimization process
results in the selection of a best performance model for

the training set. The optimised model is then applied
to the testing set. The whole process is illustrated in
Figure 1.

3. Results

3.1. Adult Acute Myeloid Leukemia Data. The above
described procedure is first applied to a microarray data-
set (containing 6.283 genes) from Bullinger et al. [11]
who used gene expression profiling to identify subclasses
of adult acute myeloid leukemia. An optimal 133-gene
signature was developed which accurately predicted survival
outcomes of an independent testing set (P = .006). Using
exactly the same assignment of training (59 samples) and
testing (57 samples) sets, we applied the above described
procedure to the training set and selected a 23-gene
expression signature for predicting the testing set (gene
filtering with P < .005 leaving 70 highly significant genes
for ranking and optimization; mean survival 384 days in
the training set and 544 days in the testing set) with
SERR(23) = 0.82. Figure 2 displays the prediction results
for the testing set shown as the SVM probability for each
testing sample with censored observations in empty and
uncensored in solid circles (Figure 2(a), sensitivity 0.71
and specificity 0.61) and as the Kaplan-Meier survival
curves for the predicted favourable (solid) and unfavourable
(dashed) groups (Figure 2(b)). A log-rank test comparing
differential survival between the two groups gave a chi-
squared of 8.58 (df = 1) and a significance of P =
.003.

3.2. Ovarian Cancer: Published Data. Bild et al. [12] reported
oncogenic pathway deregulation identified by gene expres-
sion profiling in human cancers that can be used as a
guide to targeted therapies. A relatively large collection of
132 ovarian tumour samples hybridized to the Affymetrix
GeneChip Human Genome U133a Arrays each containing
about 22,000 probe-sets were analysed as an example.
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Figure 2: Prediction results for within-study cross-validation analysis of three cancer data sets. The results are shown as the SVM probability for
each testing sample with censored observations in empty and uncensored in solid circles: (a), (c), (e) and as the Kaplan-Meier survival curves
for the predicted favourable (solid) and unfavourable (dashed) groups: (b), (d), (f) with (a) and (b) for the adult acute myeloid leukemia
data; (c) and (d) for the published ovarian cancer data; (e) and (f) for the in-house ovarian cancer data.
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Here we take the data and apply our method for select-
ing prognostic features to predict survival outcomes. We
first randomly divided the data into training and testing
sets (each containing 66 tumour samples). Following the
steps in Figure 1, we filtered genes by picking up highly
significant genes (P < .005, 194 genes) tested through
fitting the Cox regression model to the training data. These
genes were ranked and submitted to the optimization step
in training the prediction models (mean survival in the
training set 78 weeks and in testing set 64 weeks). A
list of 32 top rank genes with SERR(32) = 0.95 was
selected after optimization and used to build the final
classifier for classifying the testing set. It can be seen
from the result shown in Figure 2 that the model accu-
rately classified long survivors into favourable and most
of the short survivors into unfavourable groups with high
probabilities (Figure 2(c), sensitivity 0.93 and specificity
0.61). As a result, the log-rank test for differential survival
between the two groups gave a chi-squared as high as
16.52 (df = 1) which amounts to a P-value of 4.8e-05
(Figure 2(d)).

3.3. Ovarian Cancer: In-House Data. To show how the
method can deal with data from small studies, we applied
it to our in-house microarray data collected by Jochumsen
et al. [13]. The data contains gene expression measurements
for 43 ovarian tumour samples hybridized to the Affymetrix
GeneChip Human Genome U133 Plus 2.0 Arrays, each
containing about 55.000 probe-sets or genes. We introduce a
leave-one-out (LOO) cross-validation for evaluating model
performance considering the limited sample size. To do
that, the above described procedure (from gene filtering
to outcome prediction) is repeated every time a sample is
left out for testing except that it is done for each given
number of top rank genes accumulatively added beginning
from the highest rank gene. The included subset of top
rank genes that yield the biggest differential survival and
highest prediction accuracy are selected. Every time a
sample is dropped out, a new list of significant genes is
identified using the remaining samples (the training set)
from which the 100 top-most significant genes are ranked
using the Gram-Schmidt process. Our method produced a
25-gene signature with SERR(25) = 0.98 that predicted
the survival outcomes of all 43 samples (mean survival
39.8 months) with sensitivity 0.75 and specificity 0.69
(Figure 2(e)) and with highly significant differential survivals
(chi-squared = 10.63 with df = 1,P-value = .0011)
(Figure 2(f)).

3.4. Ovarian Cancer: Cross-Study Validation. As the above
two data sets are all on ovarian cancer, we additionally
conducted a cross-study validation to show performance
of the features selected using our method and compare
it with that from genes selected only according to their
statistical significances. The analysis also takes advantage of
the same platform of microarrays used in the two studies,
that is, the Affymetrix GeneChip Human Genome U133
Arrays although with different versions. Since the array

for our in-house data (U133 plus 2.0, 55.000 probe-sets)
is inclusive of the published array (U133a, 22.000 probe-
sets), cross-study validation is only possible for validating
genes selected from the published array data. Note here we
used the whole published data set of 132 tumour samples
for gene filtering (P < .001, 277 genes survived), ranking,
and optimization. A 31-gene signature was established with
SERR(31) = 0.91. The subset of predictive genes was then
submitted to our in-house data for validation using LOO.
In Figure 3, we show the LOO cross-validation probability
plotted against observation time for each of the 43 samples
(Figure 3(a)) and the Kaplan-Meier survival curves for the
predicted good (solid) and poor (dashed) outcome groups
(Figure 3(b)). As one can see, the classifier based on the
31-gene signature separates nicely the long survivors from
most of the short survivors (Figure 3(a), sensitivity = 0.85
and specificity = 0.64). The log-rank test for differential
survival between the two groups gave a chi-squared of 14.40
(df = 1) and a P-value of 1e-04 (3b). As a comparison,
we also performed cross-study validation on genes selected
through optimization on genes ranked according to their
statistical significances. A subset of 45 genes was selected
after optimization on the published data and applied to
our in-house data for LOO validation. Unfortunately the
prediction model failed to predict survival outcomes of our
in-house samples (sensitivity = 0.62 and specificity =
0.5; chi-squared = 0.94 with df = 1 and P-value =
.33).

4. Discussion

We have shown that our combinatory approach can be used
for selecting statistically significant and highly informative
genes for predicting tumour survival outcomes in microarray
studies. The method removes redundant genes that, although
statistically significant, have low impact on prediction so
that improved prediction on an independent testing set
is expected. Our results indicate that “significant” features
selected using the genewise approaches can contain irrelative
or redundant genes that serve only to complicate model
building for a classifier. Our empirical result helps to
further emphasize the difference between significant and
prognostic gene expression analyses because the former
only looks for genes statistically significantly regulated
(including correlated genes coexpressed in a biological
pathway) while the latter, on the other hand, tries to extract
prognostic genes that are not only statistically significant
but also highly informative in characterizing tumour out-
comes.

Our combinatory approach consists of both the super-
vised univeriate differential gene expression analysis for gene
filtering and the unsupervised multivariate algorithm for
ranking the significant genes in a consecutive manner. The
ranking of genes assists subsequently the forward optimiza-
tion step in determining the final subset of informative genes
for building up the final classifier. Given the large number
of genes measured in an experiment, it is important to
ensure that statistically highly significant genes are picked up
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Figure 3: Prediction results for cross-study validation analysis of the two ovarian cancer data sets. The results are shown as the LOO SVM
probability for each sample in the in-house data with censored observations in empty and uncensored in solid circles (a) and as the Kaplan-
Meier survival curves for the predicted favourable (solid) and unfavourable (dashed) groups (b). Results from analysis using genes ranked
by their statistical significances are shown in (c) and (d).

after gene filtering in order to form a meaningful candidate
feature space for subsequent ranking and optimization. This
is necessary because (1) the gene ranking step works only
if the candidate feature-space contains genes that are highly
correlated with tumour survival outcomes although some of
them may be of only minor impact in prediction; (2) picking
up highly significant genes helps to reduce the number of
false positive genes that are included in the candidate feature
space; and (3) a good candidate feature space can help to
increase computational efficiency because the computation
load goes up exponentially with the number of genes in the
feature space.

Feature redundancy reduction not only helps to improve
performance and generalization of a classifier, it is also
advantageous for clinical applications. With the confirmed

subset of highly prognostic genes, routine bioinstrumenta-
tions for gene expression level measurement such as the qrt-
PCR [14] can be used to reduce the cost of prognostic gene
expression analysis in clinical applications.

It is necessary to mention that the survival analysis in
the gene filtering step makes full use of both censored and
uncensored samples in identifying differentially expressed
genes. The gene filtering step using survival analysis model
can be generalized to binary or categorical clinical outcomes
such as tumour metastasis status where corresponding sta-
tistical models (e.g., t-test, ANOVA etc.) can be introduced
for determining significantly regulated genes. The only
difference is that, in training the classifier, the two-step
procedure is reduced to one-step because classes of the
training samples are already well defined.
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